发布于 2015-09-04 06:53:00 | 394 次阅读 | 评论: 0 | 来源: 网络整理
Item Loaders 提供了一种简便的构件(mechanism)来抓取:ref:Items<topics-items>. 虽然Items可以从它自己的类似字典(dictionary-like)的API得到所需信息 ,不过 Item Loaders提供了许多更加方便的API,这些API通过自动完成那些具有共通性的任务,可从抓取进程中得到这些信息, 比如预先解析提取到的原生数据。 换句话来解释, Items 提供了盛装抓取到的数据的*容器* , 而Item Loaders提供了构件*装载populating*该容器。
Item Loaders 被设计用来提供一个既弹性又高效简便的构件, 以扩展或重写爬虫或源格式(HTML, XML之类的)等区域的解析规则, 这将不再是后期维护的噩梦。
要使用Item Loader, 你必须先将它实例化. 你可以使用类似字典的对象(例如: Item or dict)来进行实例化, 或者不使用对象也可以, 当不用对象进行实例化的时候,Item会自动使用 ItemLoader.default_item_class
属性中指定的Item 类在Item Loader constructor中实例化.
然后,你开始收集数值到Item Loader时,通常使用 Selectors. 你可以在同一个item field 里面添加多个数值;Item Loader将知道如何用合适的处理函数来“添加”这些数值.
下面是在 Spider 中典型的Item Loader的用法, 使用 Items chapter 中声明的 Product item:
from scrapy.contrib.loader import ItemLoader
from myproject.items import Product
def parse(self, response):
l = ItemLoader(item=Product(), response=response)
l.add_xpath('name', '//div[@class="product_name"]')
l.add_xpath('name', '//div[@class="product_title"]')
l.add_xpath('price', '//p[@id="price"]')
l.add_css('stock', 'p#stock]')
l.add_value('last_updated', 'today') # you can also use literal values
return l.load_item()
快速查看这些代码之后,我们可以看到发现 name
字段被从页面中两个不同的XPath位置提取:
//div[@class="product_name"]
//div[@class="product_title"]
换言之,数据通过用 add_xpath()
的方法,把从两个不同的XPath位置提取的数据收集起来. 这是将在以后分配给 name
字段中的数据。
之后,类似的请求被用于 price
和 stock
字段
(后者使用 CSS selector 和 add_css()
方法),
最后使用不同的方法 add_value()
对 last_update
填充文本值( today
).
最终, 当所有数据被收集起来之后, 调用 ItemLoader.load_item()
方法, 实际上填充并且返回了之前通过调用 add_xpath()
,
add_css()
, and add_value()
所提取和收集到的数据的Item.
Item Loader在每个(Item)字段中都包含了一个输入处理器和一个输出处理器。 输入处理器收到数据时立刻提取数据 (通过 add_xpath()
, add_css()
或者
add_value()
方法) 之后输入处理器的结果被收集起来并且保存在ItemLoader内. 收集到所有的数据后, 调用
ItemLoader.load_item()
方法来填充,并得到填充后的
Item
对象. 这是当输出处理器被和之前收集到的数据(和用输入处理器处理的)被调用.输出处理器的结果是被分配到Item的最终值。
让我们看一个例子来说明如何输入和输出处理器被一个特定的字段调用(同样适用于其他field)::
l = ItemLoader(Product(), some_selector)
l.add_xpath('name', xpath1) # (1)
l.add_xpath('name', xpath2) # (2)
l.add_css('name', css) # (3)
l.add_value('name', 'test') # (4)
return l.load_item() # (5)
发生了这些事情:
xpath1
提取出的数据,传递给 输入处理器 的 name
字段.输入处理器的结果被收集和保存在Item Loader中(但尚未分配给该Item)。xpath2
提取出来的数据,传递给(1)中使用的相同的 输入处理器 .输入处理器的结果被附加到在(1)中收集的数据(如果有的话) 。css
CSS selector, and passed through the same input
processor used in (1) and (2). The result of the input processor is appended to the
data collected in (1) and (2) (if any).name
field.
The result of the output processor is the value assigned to the name
field in the item.It’s worth noticing that processors are just callable objects, which are called with the data to be parsed, and return a parsed value. So you can use any function as input or output processor. The only requirement is that they must accept one (and only one) positional argument, which will be an iterator.
注解
Both input and output processors must receive an iterator as their first argument. The output of those functions can be anything. The result of input processors will be appended to an internal list (in the Loader) containing the collected values (for that field). The result of the output processors is the value that will be finally assigned to the item.
The other thing you need to keep in mind is that the values returned by input processors are collected internally (in lists) and then passed to output processors to populate the fields.
Last, but not least, Scrapy comes with some commonly used processors built-in for convenience.
Item Loaders are declared like Items, by using a class definition syntax. Here is an example:
from scrapy.contrib.loader import ItemLoader
from scrapy.contrib.loader.processor import TakeFirst, MapCompose, Join
class ProductLoader(ItemLoader):
default_output_processor = TakeFirst()
name_in = MapCompose(unicode.title)
name_out = Join()
price_in = MapCompose(unicode.strip)
# ...
As you can see, input processors are declared using the _in
suffix while
output processors are declared using the _out
suffix. And you can also
declare a default input/output processors using the
ItemLoader.default_input_processor
and
ItemLoader.default_output_processor
attributes.
As seen in the previous section, input and output processors can be declared in the Item Loader definition, and it’s very common to declare input processors this way. However, there is one more place where you can specify the input and output processors to use: in the Item Field metadata. Here is an example:
import scrapy
from scrapy.contrib.loader.processor import Join, MapCompose, TakeFirst
from w3lib.html import remove_tags
def filter_price(value):
if value.isdigit():
return value
class Product(scrapy.Item):
name = scrapy.Field(
input_processor=MapCompose(remove_tags),
output_processor=Join(),
)
price = scrapy.Field(
input_processor=MapCompose(remove_tags, filter_price),
output_processor=TakeFirst(),
)
>>> from scrapy.contrib.loader import ItemLoader
>>> il = ItemLoader(item=Product())
>>> il.add_value('name', [u'Welcome to my', u'<strong>website</strong>'])
>>> il.add_value('price', [u'€', u'<span>1000</span>'])
>>> il.load_item()
{'name': u'Welcome to my website', 'price': u'1000'}
The precedence order, for both input and output processors, is as follows:
field_in
and field_out
(most
precedence)input_processor
and output_processor
key)ItemLoader.default_input_processor()
and
ItemLoader.default_output_processor()
(least precedence)See also: Reusing and extending Item Loaders.
The Item Loader Context is a dict of arbitrary key/values which is shared among all input and output processors in the Item Loader. It can be passed when declaring, instantiating or using Item Loader. They are used to modify the behaviour of the input/output processors.
For example, suppose you have a function parse_length
which receives a text
value and extracts a length from it:
def parse_length(text, loader_context):
unit = loader_context.get('unit', 'm')
# ... length parsing code goes here ...
return parsed_length
By accepting a loader_context
argument the function is explicitly telling
the Item Loader that it’s able to receive an Item Loader context, so the Item
Loader passes the currently active context when calling it, and the processor
function (parse_length
in this case) can thus use them.
There are several ways to modify Item Loader context values:
By modifying the currently active Item Loader context
(context
attribute):
loader = ItemLoader(product)
loader.context['unit'] = 'cm'
On Item Loader instantiation (the keyword arguments of Item Loader constructor are stored in the Item Loader context):
loader = ItemLoader(product, unit='cm')
On Item Loader declaration, for those input/output processors that support
instantiating them with an Item Loader context. MapCompose
is one of
them:
class ProductLoader(ItemLoader):
length_out = MapCompose(parse_length, unit='cm')
scrapy.contrib.loader.
ItemLoader
([item, selector, response, ]**kwargs)¶Return a new Item Loader for populating the given Item. If no item is
given, one is instantiated automatically using the class in
default_item_class
.
When instantiated with a selector or a response parameters
the ItemLoader
class provides convenient mechanisms for extracting
data from web pages using selectors.
参数: |
|
---|
The item, selector, response and the remaining keyword arguments are
assigned to the Loader context (accessible through the context
attribute).
ItemLoader
instances have the following methods:
get_value
(value, *processors, **kwargs)¶Process the given value
by the given processors
and keyword
arguments.
Available keyword arguments:
参数: | re (str or compiled regex) – a regular expression to use for extracting data from the
given value using extract_regex() method,
applied before processors |
---|
Examples:
>>> from scrapy.contrib.loader.processor import TakeFirst
>>> loader.get_value(u'name: foo', TakeFirst(), unicode.upper, re='name: (.+)')
'FOO`
add_value
(field_name, value, *processors, **kwargs)¶Process and then add the given value
for the given field.
The value is first passed through get_value()
by giving the
processors
and kwargs
, and then passed through the
field input processor and its result
appended to the data collected for that field. If the field already
contains collected data, the new data is added.
The given field_name
can be None
, in which case values for
multiple fields may be added. And the processed value should be a dict
with field_name mapped to values.
Examples:
loader.add_value('name', u'Color TV')
loader.add_value('colours', [u'white', u'blue'])
loader.add_value('length', u'100')
loader.add_value('name', u'name: foo', TakeFirst(), re='name: (.+)')
loader.add_value(None, {'name': u'foo', 'sex': u'male'})
replace_value
(field_name, value, *processors, **kwargs)¶Similar to add_value()
but replaces the collected data with the
new value instead of adding it.
get_xpath
(xpath, *processors, **kwargs)¶Similar to ItemLoader.get_value()
but receives an XPath instead of a
value, which is used to extract a list of unicode strings from the
selector associated with this ItemLoader
.
参数: |
|
---|
Examples:
# HTML snippet: <p class="product-name">Color TV</p>
loader.get_xpath('//p[@class="product-name"]')
# HTML snippet: <p id="price">the price is $1200</p>
loader.get_xpath('//p[@id="price"]', TakeFirst(), re='the price is (.*)')
add_xpath
(field_name, xpath, *processors, **kwargs)¶Similar to ItemLoader.add_value()
but receives an XPath instead of a
value, which is used to extract a list of unicode strings from the
selector associated with this ItemLoader
.
See get_xpath()
for kwargs
.
参数: | xpath (str) – the XPath to extract data from |
---|
Examples:
# HTML snippet: <p class="product-name">Color TV</p>
loader.add_xpath('name', '//p[@class="product-name"]')
# HTML snippet: <p id="price">the price is $1200</p>
loader.add_xpath('price', '//p[@id="price"]', re='the price is (.*)')
replace_xpath
(field_name, xpath, *processors, **kwargs)¶Similar to add_xpath()
but replaces collected data instead of
adding it.
get_css
(css, *processors, **kwargs)¶Similar to ItemLoader.get_value()
but receives a CSS selector
instead of a value, which is used to extract a list of unicode strings
from the selector associated with this ItemLoader
.
参数: |
|
---|
Examples:
# HTML snippet: <p class="product-name">Color TV</p>
loader.get_css('p.product-name')
# HTML snippet: <p id="price">the price is $1200</p>
loader.get_css('p#price', TakeFirst(), re='the price is (.*)')
add_css
(field_name, css, *processors, **kwargs)¶Similar to ItemLoader.add_value()
but receives a CSS selector
instead of a value, which is used to extract a list of unicode strings
from the selector associated with this ItemLoader
.
See get_css()
for kwargs
.
参数: | css (str) – the CSS selector to extract data from |
---|
Examples:
# HTML snippet: <p class="product-name">Color TV</p>
loader.add_css('name', 'p.product-name')
# HTML snippet: <p id="price">the price is $1200</p>
loader.add_css('price', 'p#price', re='the price is (.*)')
replace_css
(field_name, css, *processors, **kwargs)¶Similar to add_css()
but replaces collected data instead of
adding it.
load_item
()¶Populate the item with the data collected so far, and return it. The data collected is first passed through the output processors to get the final value to assign to each item field.
get_collected_values
(field_name)¶Return the collected values for the given field.
get_output_value
(field_name)¶Return the collected values parsed using the output processor, for the given field. This method doesn’t populate or modify the item at all.
get_input_processor
(field_name)¶Return the input processor for the given field.
get_output_processor
(field_name)¶Return the output processor for the given field.
ItemLoader
instances have the following attributes:
default_item_class
¶An Item class (or factory), used to instantiate items when not given in the constructor.
default_input_processor
¶The default input processor to use for those fields which don’t specify one.
default_output_processor
¶The default output processor to use for those fields which don’t specify one.
default_selector_class
¶The class used to construct the selector
of this
ItemLoader
, if only a response is given in the constructor.
If a selector is given in the constructor this attribute is ignored.
This attribute is sometimes overridden in subclasses.
selector
¶The Selector
object to extract data from.
It’s either the selector given in the constructor or one created from
the response given in the constructor using the
default_selector_class
. This attribute is meant to be
read-only.
As your project grows bigger and acquires more and more spiders, maintenance becomes a fundamental problem, especially when you have to deal with many different parsing rules for each spider, having a lot of exceptions, but also wanting to reuse the common processors.
Item Loaders are designed to ease the maintenance burden of parsing rules, without losing flexibility and, at the same time, providing a convenient mechanism for extending and overriding them. For this reason Item Loaders support traditional Python class inheritance for dealing with differences of specific spiders (or groups of spiders).
Suppose, for example, that some particular site encloses their product names in
three dashes (e.g. ---Plasma TV---
) and you don’t want to end up scraping
those dashes in the final product names.
Here’s how you can remove those dashes by reusing and extending the default
Product Item Loader (ProductLoader
):
from scrapy.contrib.loader.processor import MapCompose
from myproject.ItemLoaders import ProductLoader
def strip_dashes(x):
return x.strip('-')
class SiteSpecificLoader(ProductLoader):
name_in = MapCompose(strip_dashes, ProductLoader.name_in)
Another case where extending Item Loaders can be very helpful is when you have
multiple source formats, for example XML and HTML. In the XML version you may
want to remove CDATA
occurrences. Here’s an example of how to do it:
from scrapy.contrib.loader.processor import MapCompose
from myproject.ItemLoaders import ProductLoader
from myproject.utils.xml import remove_cdata
class XmlProductLoader(ProductLoader):
name_in = MapCompose(remove_cdata, ProductLoader.name_in)
And that’s how you typically extend input processors.
As for output processors, it is more common to declare them in the field metadata, as they usually depend only on the field and not on each specific site parsing rule (as input processors do). See also: Declaring Input and Output Processors.
There are many other possible ways to extend, inherit and override your Item Loaders, and different Item Loaders hierarchies may fit better for different projects. Scrapy only provides the mechanism; it doesn’t impose any specific organization of your Loaders collection - that’s up to you and your project’s needs.
Even though you can use any callable function as input and output processors,
Scrapy provides some commonly used processors, which are described below. Some
of them, like the MapCompose
(which is typically used as input
processor) compose the output of several functions executed in order, to
produce the final parsed value.
Here is a list of all built-in processors:
scrapy.contrib.loader.processor.
Identity
¶The simplest processor, which doesn’t do anything. It returns the original values unchanged. It doesn’t receive any constructor arguments nor accepts Loader contexts.
Example:
>>> from scrapy.contrib.loader.processor import Identity
>>> proc = Identity()
>>> proc(['one', 'two', 'three'])
['one', 'two', 'three']
scrapy.contrib.loader.processor.
TakeFirst
¶Returns the first non-null/non-empty value from the values received, so it’s typically used as an output processor to single-valued fields. It doesn’t receive any constructor arguments, nor accept Loader contexts.
Example:
>>> from scrapy.contrib.loader.processor import TakeFirst
>>> proc = TakeFirst()
>>> proc(['', 'one', 'two', 'three'])
'one'
scrapy.contrib.loader.processor.
Join
(separator=u' ')¶Returns the values joined with the separator given in the constructor, which
defaults to u' '
. It doesn’t accept Loader contexts.
When using the default separator, this processor is equivalent to the
function: u' '.join
Examples:
>>> from scrapy.contrib.loader.processor import Join
>>> proc = Join()
>>> proc(['one', 'two', 'three'])
u'one two three'
>>> proc = Join('<br>')
>>> proc(['one', 'two', 'three'])
u'one<br>two<br>three'
scrapy.contrib.loader.processor.
Compose
(*functions, **default_loader_context)¶A processor which is constructed from the composition of the given functions. This means that each input value of this processor is passed to the first function, and the result of that function is passed to the second function, and so on, until the last function returns the output value of this processor.
By default, stop process on None
value. This behaviour can be changed by
passing keyword argument stop_on_none=False
.
Example:
>>> from scrapy.contrib.loader.processor import Compose
>>> proc = Compose(lambda v: v[0], str.upper)
>>> proc(['hello', 'world'])
'HELLO'
Each function can optionally receive a loader_context
parameter. For
those which do, this processor will pass the currently active Loader
context through that parameter.
The keyword arguments passed in the constructor are used as the default
Loader context values passed to each function call. However, the final
Loader context values passed to functions are overridden with the currently
active Loader context accessible through the ItemLoader.context()
attribute.
scrapy.contrib.loader.processor.
MapCompose
(*functions, **default_loader_context)¶A processor which is constructed from the composition of the given
functions, similar to the Compose
processor. The difference with
this processor is the way internal results are passed among functions,
which is as follows:
The input value of this processor is iterated and the first function is applied to each element. The results of these function calls (one for each element) are concatenated to construct a new iterable, which is then used to apply the second function, and so on, until the last function is applied to each value of the list of values collected so far. The output values of the last function are concatenated together to produce the output of this processor.
Each particular function can return a value or a list of values, which is
flattened with the list of values returned by the same function applied to
the other input values. The functions can also return None
in which
case the output of that function is ignored for further processing over the
chain.
This processor provides a convenient way to compose functions that only
work with single values (instead of iterables). For this reason the
MapCompose
processor is typically used as input processor, since
data is often extracted using the
extract()
method of selectors, which returns a list of unicode strings.
The example below should clarify how it works:
>>> def filter_world(x):
... return None if x == 'world' else x
...
>>> from scrapy.contrib.loader.processor import MapCompose
>>> proc = MapCompose(filter_world, unicode.upper)
>>> proc([u'hello', u'world', u'this', u'is', u'scrapy'])
[u'HELLO, u'THIS', u'IS', u'SCRAPY']
As with the Compose processor, functions can receive Loader contexts, and
constructor keyword arguments are used as default context values. See
Compose
processor for more info.