NLTK 会被自然地看作是具有栈结构的一系列层,这些层构建于彼此基础之上。那些熟悉人工语言(比如 Python)的文法和解析的读者来说,理解自然语言模型中类似的 &mDash;— 但更深奥的 —— 层不会有太大困难。
尽管 NLTK 附带了很多已经预处理(通常是手工地)到不同程度的全集,但是概念上每一层都是依赖于相邻的更低层次的处理。首先是断词;然后是为单词加上 标签;然后将成组的单词解析为语法元素,比如名词短语或句子(取决于几种技术中的某一种,每种技术都有其优缺点);最后对最终语句或其他语法单元进行分类。通过这些步骤,NLTK 让您可以生成关于不同元素出现情况的统计,并画出描述处理过程本身或统计合计结果的图表。
发布于 2016-01-18 02:06:51 | 378 次阅读