发布于 2015-06-21 10:34:35 | 553 次阅读 | 评论: 0 | 来源: 网络整理
上一回, 我学会了
这一回, 开始用Python将伪代码中的所有部分实现. 由于文章的标题就是”零基础”, 因此会先把用到的两种数据结构队列和集合介绍一下. 而对于”正则表达式“部分, 限于篇幅不能介绍, 但给出我比较喜欢的几个参考资料.
在爬虫程序中, 用到了广度优先搜索(BFS)算法. 这个算法用到的数据结构就是队列.
Python的List功能已经足够完成队列的功能, 可以用 append() 来向队尾添加元素, 可以用类似数组的方式来获取队首元素, 可以用 pop(0) 来弹出队首元素. 但是List用来完成队列功能其实是低效率的, 因为List在队首使用 pop(0) 和 insert() 都是效率比较低的, Python官方建议使用collection.deque来高效的完成队列任务.
from collections import deque
queue = deque(["Eric", "John", "Michael"])
queue.append("Terry") # Terry 入队
queue.append("Graham") # Graham 入队
queue.popleft() # 队首元素出队
#输出: 'Eric'
queue.popleft() # 队首元素出队
#输出: 'John'
queue # 队列中剩下的元素
#输出: deque(['Michael', 'Terry', 'Graham'])
(以上例子引用自官方文档)
在爬虫程序中, 为了不重复爬那些已经爬过的网站, 我们需要把爬过的页面的url放进集合中, 在每一次要爬某一个url之前, 先看看集合里面是否已经存在. 如果已经存在, 我们就跳过这个url; 如果不存在, 我们先把url放入集合中, 然后再去爬这个页面.
Python提供了set这种数据结构. set是一种无序的, 不包含重复元素的结构. 一般用来测试是否已经包含了某元素, 或者用来对众多元素们去重. 与数学中的集合论同样, 他支持的运算有交, 并, 差, 对称差.
创建一个set可以用 set() 函数或者花括号 {} . 但是创建一个空集是不能使用一个花括号的, 只能用 set() 函数. 因为一个空的花括号创建的是一个字典数据结构. 以下同样是Python官网提供的示例.
>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # 这里演示的是去重功能
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # 快速判断元素是否在集合内
True
>>> 'crabgrass' in basket
False
>>> # 下面展示两个集合间的运算.
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # 集合a中包含元素
{'r', 'd', 'b'}
>>> a | b # 集合a或b中包含的所有元素
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # 集合a和b中都包含了的元素
{'a', 'c'}
>>> a ^ b # 不同时包含于a和b的元素
{'r', 'd', 'b', 'm', 'z', 'l'
其实我们只是用到其中的快速判断元素是否在集合内的功能, 以及集合的并运算.
在爬虫程序中, 爬回来的数据是一个字符串, 字符串的内容是页面的html代码. 我们要从字符串中, 提取出页面提到过的所有url. 这就要求爬虫程序要有简单的字符串处理能力, 而正则表达式可以很轻松的完成这一任务.
虽然正则表达式功能异常强大, 很多实际上用的规则也非常巧妙, 真正熟练正则表达式需要比较长的实践锻炼. 不过我们只需要掌握如何使用正则表达式在一个字符串中, 把所有的url都找出来, 就可以了. 如果实在想要跳过这一部分, 可以在网上找到很多现成的匹配url的表达式, 拿来用即可.
有了以上铺垫, 终于可以开始写真正的爬虫了. 我选择的入口地址是Fenng叔的Startup News, 我想Fenng叔刚刚拿到7000万美金融资, 不会介意大家的爬虫去光临他家的小站吧. 这个爬虫虽然可以勉强运行起来, 但是由于缺乏异常处理, 只能爬些静态页面, 也不会分辨什么是静态什么是动态, 碰到什么情况应该跳过, 所以工作一会儿就要败下阵来.
import re
import urllib.request
import urllib
from collections import deque
queue = deque()
visited = set()
url = 'http://news.dbanotes.net' # 入口页面, 可以换成别的
queue.append(url)
cnt = 0
while queue:
url = queue.popleft() # 队首元素出队
visited |= {url} # 标记为已访问
print('已经抓取: ' + str(cnt) + ' 正在抓取 <--- ' + url)
cnt += 1
urlop = urllib.request.urlopen(url)
if 'html' not in urlop.getheader('Content-Type'):
continue
# 避免程序异常中止, 用try..catch处理异常
try:
data = urlop.read().decode('utf-8')
except:
continue
# 正则表达式提取页面中所有队列, 并判断是否已经访问过, 然后加入待爬队列
linkre = re.compile('href="(.+?)"')
for x in linkre.findall(data):
if 'http' in x and x not in visited:
queue.append(x)
print('加入队列 ---> ' + x)
这个版本的爬虫使用的正则表达式是
'href="(.+?)"'
所以会把那些.ico或者.jpg的链接都爬下来. 这样read()了之后碰上decode(‘utf-8′)就要抛出异常. 因此我们用getheader()函数来获取抓取到的文件类型, 是html再继续分析其中的链接.
if 'html' not in urlop.getheader('Content-Type'):
continue
但是即使是这样, 依然有些网站运行decode()会异常. 因此我们把decode()函数用try..catch语句包围住, 这样他就不会导致程序中止. 程序运行效果图如下:
爬虫是可以工作了, 但是在碰到连不上的链接的时候, 它并不会超时跳过. 而且爬到的内容并没有进行处理, 没有获取对我们有价值的信息, 也没有保存到本地. 下次我们可以完善这个alpha版本.