发布于 2018-02-17 04:24:54 | 417 次阅读 | 评论: 0 | 来源: 网友投递
这里有新鲜出炉的Python3 Cookbook中文版,程序狗速度看过来!
Python编程语言
Python 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。
刚看了《最强大脑》中英对决,其中难度最大的项目需要选手先脑补泰森多边形,再找出完全相同的两个泰森多边形。在惊呆且感叹自身头脑愚笨的同时,不免手痒想要借助电脑弄个图出来看看,闲来无事吹吹牛也是极好的。
今天先来画画外接圆和内切圆,留个大坑后面来填。
外接圆圆心:三角形垂直平分线的交点。
内切圆圆心:三角形角平分线的交点。
有了思路,就可以用万能的python来计算了
import matplotlib.pyplot as plt
from scipy.linalg import solve
import numpy as np
from matplotlib.patches import Circle
'''
求三角形外接圆和内切圆
'''
# 画个三角形
def plot_triangle(A, B, C):
x = [A[0], B[0], C[0], A[0]]
y = [A[1], B[1], C[1], A[1]]
ax = plt.gca()
ax.plot(x, y, linewidth=2)
# 画个圆
def draw_circle(x, y, r):
ax = plt.gca()
cir = Circle(xy=(x, y), radius=r, alpha=0.5)
ax.add_patch(cir)
ax.plot()
# 外接圆
def get_outer_circle(A, B, C):
xa, ya = A[0], A[1]
xb, yb = B[0], B[1]
xc, yc = C[0], C[1]
# 两条边的中点
x1, y1 = (xa + xb) / 2.0, (ya + yb) / 2.0
x2, y2 = (xb + xc) / 2.0, (yb + yc) / 2.0
# 两条线的斜率
ka = (yb - ya) / (xb - xa) if xb != xa else None
kb = (yc - yb) / (xc - xb) if xc != xb else None
alpha = np.arctan(ka) if ka != None else np.pi / 2
beta = np.arctan(kb) if kb != None else np.pi / 2
# 两条垂直平分线的斜率
k1 = np.tan(alpha + np.pi / 2)
k2 = np.tan(beta + np.pi / 2)
# 圆心
y, x = solve([[1.0, -k1], [1.0, -k2]], [y1 - k1 * x1, y2 - k2 * x2])
# 半径
r1 = np.sqrt((x - xa)**2 + (y - ya)**2)
return(x, y, r1)
# 内切圆
def get_inner_circle(A, B, C):
xa, ya = A[0], A[1]
xb, yb = B[0], B[1]
xc, yc = C[0], C[1]
ka = (yb - ya) / (xb - xa) if xb != xa else None
kb = (yc - yb) / (xc - xb) if xc != xb else None
alpha = np.arctan(ka) if ka != None else np.pi / 2
beta = np.arctan(kb) if kb != None else np.pi / 2
a = np.sqrt((xb - xc)**2 + (yb - yc)**2)
b = np.sqrt((xa - xc)**2 + (ya - yc)**2)
c = np.sqrt((xa - xb)**2 + (ya - yb)**2)
ang_a = np.arccos((b**2 + c**2 - a**2) / (2 * b * c))
ang_b = np.arccos((a**2 + c**2 - b**2) / (2 * a * c))
# 两条角平分线的斜率
k1 = np.tan(alpha + ang_a / 2)
k2 = np.tan(beta + ang_b / 2)
kv = np.tan(alpha + np.pi / 2)
# 求圆心
y, x = solve([[1.0, -k1], [1.0, -k2]], [ya - k1 * xa, yb - k2 * xb])
ym, xm = solve([[1.0, -ka], [1.0, -kv]], [ya - ka * xa, y - kv * x])
r1 = np.sqrt((x - xm)**2 + (y - ym)**2)
return(x, y, r1)
if __name__ == '__main__':
A = (1., 1.)
B = (5., 2.)
C = (5., 5.)
plt.axis('equal')
plt.axis('off')
plot_triangle(A, B, C)
x, y, r1 = get_outer_circle(A, B, C)
plt.plot(x, y, 'ro')
draw_circle(x, y, r1)
x_inner, y_inner, r_inner = get_inner_circle(A, B, C)
plt.plot(x_inner, y_inner, 'ro')
draw_circle(x_inner, y_inner, r_inner)
plt.show()
下面看看两个三角形的结果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持PHPERZ。